聚类分析方法有什么好处
来源:MINISO栏目:生活时间:2024-05-20 18:14:54
聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:
1、系统聚类法;
2、K-均值法;
3、模糊聚类法;
4、有序样品的聚类,
5、分解法;
6、加入法。
注意事项:
1、系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2、K-均值法要求分析人员事先知道样品分为多少类;
3、对变量的多元正态性,方差齐性等要求较高。
免责声明:该内容由用户自行上传分享到《 秘密研究社》,仅供个人学习交流分享。本站无法对用户上传的所有内容(包括且不仅限于图文音视频)进行充分的监测,且有部分图文资源转载于网络,主要用于方便广大网友在线查询参考学习,不提供任何商业化服务。若侵犯了您的合法权益,请立即通知我们( 管理员邮箱:[email protected]),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!!