lnx在1到e上的积分是多少

来源:MINISO栏目:生活时间:2024-05-21 08:48:48

lnx在1到e上的积分是1,原式=∫(1,e)lnxdx=xlnx(1,e)-∫(1,e)xdlnx=xlnx(1,e)-∫(1,e)x*1/xdx=xlnx(1,e)-∫(1,e)dx=(xlnx-x)(1,e)=(e-e)-(0-1)=1。

定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

免责声明:该内容由用户自行上传分享到《 秘密研究社》,仅供个人学习交流分享。本站无法对用户上传的所有内容(包括且不仅限于图文音视频)进行充分的监测,且有部分图文资源转载于网络,主要用于方便广大网友在线查询参考学习,不提供任何商业化服务。若侵犯了您的合法权益,请立即通知我们( 管理员邮箱:[email protected]),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!!