第一类间断点一定没有原函数吗
来源:库飞昂栏目:生活时间:2024-05-21 05:52:00
有第一类间断点无原函数。
设f(x)在x0的某个邻域上连续,且在该邻域上除去x0这一点之外都可导,其导数为f'(x)。如果当x趋于x0时f'(x)有极限,则f(x)在x0这一点也可导,并且有f'(x0)=lim(x→x0)f'(x)。
根据这个定理我们马上知道,如果一个函数在某个区间上可导,它的导数在该区间上不会有第一类间断点。换句话说,在区间上有第一类间断点就没有原函数。
间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。左右极限存在且相等是可去间断点,左右极限存在且不相等才是跳跃间断点。
免责声明:该内容由用户自行上传分享到《 秘密研究社》,仅供个人学习交流分享。本站无法对用户上传的所有内容(包括且不仅限于图文音视频)进行充分的监测,且有部分图文资源转载于网络,主要用于方便广大网友在线查询参考学习,不提供任何商业化服务。若侵犯了您的合法权益,请立即通知我们( 管理员邮箱:[email protected]),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!!